Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome.
نویسندگان
چکیده
Hepatitis B virus (HBV) remains a global health threat as chronic HBV infection may lead to liver cirrhosis or cancer. Current antiviral therapies with nucleoside analogues can inhibit the replication of HBV, but do not disrupt the already existing HBV covalently closed circular DNA. The newly developed CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated 9) system is a powerful tool to target cellular genome DNA for gene editing. In order to investigate the possibility of using the CRISPR/Cas9 system to disrupt the HBV DNA templates, we designed eight guide RNAs (gRNAs) that targeted the conserved regions of different HBV genotypes, which could significantly inhibit HBV replication both in vitro and in vivo. Moreover, the HBV-specific gRNA/Cas9 system could inhibit the replication of HBV of different genotypes in cells, and the viral DNA was significantly reduced by a single gRNA/Cas9 system and cleared by a combination of different gRNA/Cas9 systems.
منابع مشابه
Developing oncolytic Herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9
Objective(s): Oncolytic Herpes simplex virus type 1 (HSV-1) has emerged as a promising strategy for cancer therapy. However, development of novel oncolytic mutants has remained a major challenge owing to low efficiency of conventional genome editing methods. Recently, CRISPR-Cas9 has revolutionized genome editing.Materials and Methods: I...
متن کاملCRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus
Chronic hepatitis B virus (HBV) infection is prevalent, deadly, and seldom cured due to the persistence of viral episomal DNA (cccDNA) in infected cells. Newly developed genome engineering tools may offer the ability to directly cleave viral DNA, thereby promoting viral clearance. Here, we show that the CRISPR/Cas9 system can specifically target and cleave conserved regions in the HBV genome, r...
متن کاملEfficient inhibition of duck hepatitis B virus DNA by the CRISPR/Cas9 system
Current therapeutic strategies cannot eradicate hepatitis B virus covalently closed circular DNA (HBV cccDNA), which accounts for the persistence of HBV infection. Very recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‑associated protein 9 (Cas9) system has been used as an efficient and powerful tool for viral genome editing. Given that the primary duck hepa...
متن کاملApplication of CRISPR/Cas9 Technology to HBV.
More than 240 million people around the world are chronically infected with hepatitis B virus (HBV). Nucleos(t)ide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA), which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and s...
متن کاملThe Application of NHEJ-CRISPR/Cas9 and Cre-Lox System in the Generation of Bivalent Duck Enteritis Virus Vaccine against Avian Influenza Virus
Duck-targeted vaccines to protect against avian influenza are critically needed to aid in influenza disease control efforts in regions where ducks are endemic for highly pathogenic avian influenza (HPAI). Duck enteritis virus (DEV) is a promising candidate viral vector for development of vaccines targeting ducks, owing to its large genome and narrow host range. The clustered regularly interspac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of general virology
دوره 96 8 شماره
صفحات -
تاریخ انتشار 2015